
Abstract-The amplitude of the surface EMG signal may provide 
a more accurate reflection of motor unit activity during 
sustained fatiguing contractions than spectral parameters which 
are more commonly used to estimate muscle fatigue.  In this 
paper, theoretical relationships between surface EMG 
amplitude measures and mean motor unit firing rates and 
muscle fiber conduction velocity (MFCV) are established.   It is 
proposed that using these relationships, under conditions where 
motor unit recruitment and synchronization can be assumed to 
be negligible, such as at high force levels or in smaller muscles, it 
may be possible to obtain an estimate of relative changes in 
motor unit firing rates during a sustained isometric contraction.  
Using EMG amplitude and MFCV data gathered from the 
brachioradialis muscle during 80% maximum voluntary 
contraction, relative changes in mean motor unit firing rates 
were estimated in this manner.  MFCV and the estimated firing 
rate changes were then incorporated into a model of the surface 
EMG signal.  Simulated EMG data was generated individually 
for each subject and EMG amplitude and spectral parameters 
calculated from the simulated and experimental data were 
found to compare well. 
 Keywords - EMG, amplitude, conduction velocity, motor unit 
firing rates. 

 
I. INTRODUCTION 

 

Many studies have focused on changes that occur in the 
power spectrum of the surface electromyographic (EMG) 
signal and on the use of EMG spectral parameters to estimate 
muscle fatigue during sustained contractions [1],[2].  
Although the amplitude of the EMG signal is an easily 
monitored and commonly used measure of muscle activity, 
the relationship between changes in EMG amplitude and the 
physiological processes associated with muscle fatigue are 
not as well established.  Nevertheless, it has been suggested 
that EMG amplitude may reflect underlying motor unit 
activity better than frequency spectrum shifts [3].   

Surface EMG amplitude depends on a wide range of 
parameters. Assuming that the physical properties associated 
with the detection and recording of the signal are invariant 
with time, changes observed during sustained isometric 
contractions may be attributed to time dependent properties 
of the EMG signal in particular, muscle fiber conduction 
velocity (MFCV), motor unit recruitment, firing rates and 
motor unit synchronization.  It is known that certain muscles 
rely predominantly on firing rate modulation to control the 
force output of the muscle.  Similarly, studies indicate that 
during high-level contractions, muscles such as the biceps no 
longer continue to recruit additional motor units.  Under 
conditions where motor unit recruitment and synchronization 
can be assumed to be negligible, by establishing relationships 
between EMG amplitude and MFCV and motor unit firing 
rate, it may be possible to infer information about firing rate 
behavior from changes in surface EMG amplitude and 

measured MFCV.  A technique which could provide 
information on motor unit firing statistics without 
necessitating the use of intramuscular electrodes, and during 
high level contractions where it is difficult to distinguish 
between individual motor unit action potential trains, would 
potentially be a very valuable tool. 

In this paper, changes in conduction velocity and mean 
firing rate are related to two commonly employed measures 
of surface EMG amplitude - the root mean square (RMS) 
value and the average rectified (AR) value.  Based on these 
relationships, measured MFCV and EMG RMS amplitude are 
used to estimate changes in mean motor unit firing rates 
during sustained isometric contractions of the brachioradialis 
muscle at 80% MVC.   The MFCV and estimated firing rate 
changes are simulated using a model of the surface EMG 
signal.  The RMS and AR values of the simulated and 
experimental data are compared.  Three spectral variables are 
also examined - the median frequency of the EMG amplitude 
spectrum, the median frequency of the EMG power spectrum 
and the spectral distribution function (SDF) estimate (the 
mean shift in the amplitude spectrum between the 60th and 
90th percentiles [4]). 

 
II. ANALYTICAL APPROACH 

 
The voluntary EMG signal may be considered as the sum of 
N independent motor unit action potential (MUAP) trains and 
is commonly described in the following manner, [5][6],  
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where ψi(t), denotes the ith MUAP train, characterised by the 
motor unit firing statistics, the conduction velocity and the 
extracellular action potentials.  Assuming that the MUAPs 
are of zero mean, the RMS value of the EMG signal, 

EMGRMS , is given by [7]  
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where 
iMUAPT

RMS is the root mean square value of the ith 

MUAP train, ψi(t) and E[ψi(t).ψj(t)] is the expected value of 
the product of the MUAP trains ψi(t) and ψj(t).  For 
independent or uncorrelated motor units, E[ψi(t).ψj(t)] will be 
zero [7].  Assuming that the shape and conduction velocity of 
successive action potentials remain constant and the period 
over which the RMS value is calculated, T, contains an 
integral number of MUAPs (or is large relative to the mean 
inter-pulse interval ) then the RMS value of each MUAP train 
may be approximated as follows 
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where ϕi(t), is the MUAP generated by the ith motor unit and 
ipii is the mean inter-pulse interval of the ith motor unit  The 
average rectified value of each MUAP train, 

iMUAPTAR , may 

be similarly approximated as 
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A Conduction velocity 

Assuming a constant spatial distribution of the 
transmembrane potential along the muscle fiber, the single 
fiber action potential will scale proportionally with changing 
MFCV. If the time dispersion effects of individual fiber 
action potentials within the MUAP are regarded as negligible 
[1] and the conduction velocities of all fibers in the motor 
unit are scaled by vc �  then 
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where 
1i

ϕ  and 
2i

ϕ  are the MUAPs detected before and after 

the conduction velocity has been scaled.    Assuming that the 
motor units are independent and hence uncorrelated, 
substituting the expression for the RMS value of a train of 
MUAPs from (3) into the RMS value of the EMG signal, (2), 
and scaling the conduction velocity of all motor units by vc � , 
(5), the following relationship between the RMS values 
before and after the change in MFCV,

1cvEMGRMS  and 

2cvEMGRMS  , is obtained 
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This relationship holds regardless of the number of motor 
units that are active.  For a single action potential, this result 
has been previously derived [8] and also illustrated using 
simulation methods [9]. 
 
It follows similarly from (4) and (5) that the AR value of a 
single train of MUAPs is inversely proportionally to the fibre 
conduction velocity. However, as the number of action 
potentials detected at the electrode increases the energy lost 
to motor unit interference must be accounted for.  If a 
sufficiently large number of action potentials are detected, the 
Law of Large Numbers may be applied.  The signal can then 
be assumed to have a Gaussian probability density, for which 
the average value of the rectified signal is defined as follows 
[7], [10]  
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where E[|EMG|] is the expected value of the absolute value of 
the EMG signal and σEMG, is the standard deviation of the 
EMG signal.   For a signal of zero mean, the RMS value is an 
estimate of the standard deviation of the signal [11] 

EMGEMGRMS σ=         (8) 

It follows from (7) and (8) that for large numbers of active 
motor units, the AR value will be proportional to the RMS 
value and under the conditions for which (6) was derived will 
also vary inversely proportional with the square root of the 
fiber conduction velocity. 
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where 
1cvEMGAR is the average rectified value of the original 

EMG signal, and 
2cvEMGARV

 

is the AR value after the 

conduction velocity has been scaled. 
 
B. Motor Unit Firing rates  

Consider now the EMG signal as motor unit firing rates 
are allowed to change.  If the firing rates of all motor units 

are scaled by a factor rf� , then substituting 
iipi1 with 

iipirf /�  

in equation (3) and then into (2), it follows that 
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where 
2frEMGRMS

 

is the RMS value of the EMG signal after 

the change in firing rate, and 
1frEMGRMS , the initial RMS 

value.  For the single MUAP, the AR value will be 
proportional to the mean motor unit firing rate, (4).  Once 
there is a sufficiently large number of motor units active for a 
Gaussian approximation to hold, the AR value of the EMG 
signal will vary proportional to the RMS value as before (7), 
and from (10) 
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Under conditions where MFCV and motor unit firing rates 
are the dominant mechanisms responsible for changes in 
EMG amplitude, if it is assumed that the mean firing rates of 
all motor units change proportional to one another, and the 
conduction velocities of all motor units change proportional 
to one another, then the RMS value of the EMG signal can be 
related to the RMS value at the start of the contraction as 
follows 
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III. EXPERIMENTAL METHODS 

A. Methods 
EMG amplitude and muscle fiber conduction velocity 

were simultaneously measured from the right brachioradialis 
muscle during sustained isometric flexion of the elbow at 
80% maximum voluntary contraction (MVC) in 6 normal 
subjects (2 female, aged 20 to 33 years).   A specially 
designed rig was used to enable the subjects to sit with their 
elbow flexed to a ninety-degree angle in a rigid brace with 
the upper arm vertical, next to the trunk, and the forearm 
horizontal.  The subject�s back was supported, as was the 
back of the upper arm, underneath the forearm and the elbow.  
The arm was in a neutral position, semi-prone, with the 
palmar surface of the hand in the vertical plane.   Two straps 
were attached to a plate connected to a load cell (SM-500N, 
Interface Inc.) which was fitted to the rig.  These two straps 
were fastened about the subject�s wrist and another strap was 
fastened about the subjects upper arm and the back of the rig.  



Each subject was instructed to flex the arm, pulling directly 
upwards against the wrist straps using the brachioradialis 
muscle.  Subjects were asked to keep the elbow fixed at a 
right angle and to bear down upon it to avoid shoulder lifting.  
The force produced at the load cell was displayed to the 
subject on a monitor placed at eye level.   
 

An electrode was constructed consisting of four bar 
electrodes, each 20mm long, mounted parallel to one another, 
8 mm apart, on a perspex block.  The electrode block was 
placed on the brachioradialis muscle, so that each electrode 
was positioned perpendicular to the fiber direction, and away 
from the innervation zone of the muscle.  The four bar 
electrodes, grouped into pairs, were connected to the inputs 
of three differential amplifiers, band-pass filtered between 
1Hz and 500Hz, and recorded on a computer at a sampling 
frequency of 2kHz, using the MP100 EMG System (Biopac 
Systems, California).  Each contraction was maintained until 
task failure, which was defined as the point at which the force 
fell below 90% of the target value. 

 
B. Data Analysis  

The three signals from the single differential amplifiers 
were grouped into two pairs which were then differentially 
amplified off-line yielding two double differentially 
amplified signals.  MFCV was estimated at 500ms intervals 
as proposed by [12] by locating the maximum of the cross 
correlation of the two double differential signals.  Signals 
were temporarily over-sampled at 40 kHz, to obtain a 
sufficiently high time resolution for the MFCV estimates.  
The AR and RMS value of the surface EMG signals were 
also calculated.  

Using the relationship expressed in (12), the relative 
change in mean muscle fiber firing rate, with respect to the  
beginning of the contraction, was estimated individually for 
each subject using the measured EMG RMS and MFCV 
values. 

 
IV. SIMULATIONS  

 
For each subject, the estimated change in motor unit firing 
rate and MFCV changes, normalized with respect to their 
values at the start of the contraction, were each fitted with a 
4th order polynomial.  These values were then used as input 
data for the simulation of a set of surface EMG data for each 
subject. The data was simulated using the surface EMG 
model described in [4].  197 motor units from a total pool of 
213 were activated during each simulated contraction.  
MFCV ranged from 3.02-4.25 m/s.  Mean motor unit firing 
rates had a mean value of 25 Hz and standard deviation of 5 
Hz.  Electrodes were placed 8 mm apart as in the 
experimental protocol.  EMG data was simulated as MFCV 
and mean motor unit firing rates were altered according to the 
polynomials obtained from the experimental data.   The RMS 
value, AR value, amplitude spectrum median frequency, 
power spectrum median frequency and SDF estimate were 
calculated each set of simulated data.   EMG variables from 
the simulated and experimental data were compared.  

 
V. RESULTS  

In Fig. 1, the estimated relative change in motor unit firing 
rates, along with a 4th order polynomial fitted to the data, are 
presented for subject 1.   In Fig. 2, the spectral and amplitude 
variables calculated from the simulated EMG are compared 
with the experimentally obtained values for the same subject.  
Results are presented for only one subject, as these are 
representative of the results obtained for all subjects.  In all 
but one subject a good agreement between simulated and 
experimental variables was obtained.   

 
VI. DISCUSSION 

 
EMG spectral variables are commonly used to examine 

muscle fatigue during sustained isometric contractions.  The 
spectral changes observed are most commonly associated 
with variations in MFCV.  The amplitude of the surface EMG 
signal may, however, provide a more accurate reflection of 
changes that occur in motor unit firing and recruitment 
patterns [3].  However, it is difficult to extract the desired 
information as the amplitude of the surface EMG signal is 
very sensitive to changes in many different parameters.  
Establishing analytical relationships between EMG amplitude 
measures, and physiological parameters, such as MFCV and 
motor unit firing rates, may enable more information to be 
extracted from the amplitude of the signal, under controlled 
conditions.   A prerequisite for applying the relationships 
derived here is that motor unit recruitment and 
synchronization can be assumed to be negligible.  If it can be 
assumed that the changes in the EMG amplitude are 
predominantly due to changes in motor unit firing rates and 
MFCV, it should be possible to �reverse engineer� the 
problem to obtain an estimate of the relative change in mean 
motor unit firing rates from measured EMG amplitude and 
MFCV.   An example of how this technique may be applied 
is presented here.  Clearly a more extensive analysis, 
preferably where motor unit firing rates can be directly 
measured, is required to verify the accuracy of these 
estimates.  However, the assumptions made seem reasonable 
under the experimental conditions described. Furthermore, 
the model simulations indicate that the measured MFCV and 
estimated motor unit firing rate changes are consistent with 
the amplitude and spectral changes observed experimentally.   
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Fig. 1. Estimated mean motor unit firing rates from subject 1, 
during a sustained isometric contraction of the brachioradialis 
muscle.  The data is normalized with respect to the start of the 

contraction and fitted with a 4th order polynomial. 



V. CONCLUSION 

By establishing theoretical relationships between changes in 
EMG amplitude and MFCV and motor unit firing rates, it 
may be possible to reveal information about underlying motor 
unit activity.  Using relationships derived here, it is proposed 
that it may be possible to obtain an estimate of changes in 
motor unit firing rates from measured changes in EMG 
amplitude and MFCV, either during very high-level 
contractions, or in small muscles at levels where recruitment 
of motor units no longer occurs.  Model simulations confirm 
that the measured MFCV and estimated firing rate changes 
can cause the observed changes in EMG amplitude.  
However, a more extensive analysis is required to test the 
accuracy of the proposed technique. 
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Fig. 2. Comparison of simulated (dashed line) and experimental (solid line) EMG variables for subject 1.   All variables have been 
normalized with respect to their initial values.   
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